摘要

研究了基于烟叶的近红外光谱数据通过软独立模式分类(SIMCA)识别不同烟叶的方法。首先对每种具有确定产地、等级、品种的目标烟叶进行多次分布式取样,扫描目标烟叶多个样品的近红外光谱;再对目标烟叶近红外光谱进行主成分分析(PCA)运算生成每种目标烟叶的数据模型;然后扫描未知烟叶的近红外光谱,用目标烟叶数据模型对未知烟叶近红外光谱进行主成分分解计算,计算未知烟叶与目标烟叶的距离,通过距离衡量未知烟叶与目标烟叶的相似程度。建立了包含115种不同产地、等级、品种的目标烟叶的数据模型,对115个外部检验样品进行了模式识别,正确识别率高于90%。结果表明该烟叶模式识别方法基础数据易得,同时考虑了烟叶的平均水...

  • 单位
    湖南中烟工业有限责任公司