摘要
相较于有人驾驶飞行器,无人机具有诸多优势,在军事、民用及科研等领域都有着广泛应用。但是,无人机缺少飞行员的实时决策能力,因此具有较高的事故率。故障预测是无人机健康管理技术的核心,在构建故障预警模型之前,很重要的一步是对采样数据进行模式识别,进而对建模的训练数据添加精准标签,这也是完善飞行画像的一部分。文中基于沈阳某无人机生产公司大数据平台累积的无人机飞行数据,提出利用半监督聚类技术自动识别飞行过程的正常点、故障点(若故障后发生炸机,则包括炸机点)以及炸机后的点(若故障后发生炸机),在加强对飞行数据进行管理和统计的同时,进一步提高对历史飞行数据添加精准标签的效率和准确率。在真实的飞行数据或飞行测试数据上进行实验,人工验证的结果表明故障点的识别率可达到80%以上。
-
单位吉林财经大学