摘要

桥梁裂缝检测对于桥梁健康检测具有重要的意义.基于布里渊时域分析的分布式光纤传感器能够测量整个结构表面的应变数据.由于测量所得应变数据信噪比低,存在裂缝损伤处的应变异常被噪声"淹没"和"混淆"的问题.针对这一问题,提出一种基于一维堆叠卷积自编码器的分类检测方法.该方法具有噪声鲁棒性强、自提取特征可判别性高等优势.首先,通过布置光纤传感器获取结构表面应变数据,对光纤应变数据进行标准化预处理,并划分应变子序列.然后,使用一维堆叠卷积自编码器自动提取应变子序列的特征.最后,通过Softmax分类器对所提取的应变子序列特征进行分类,即裂缝或非裂缝.实验结果表明,该方法可以有效检测微小裂缝,检测准确率高.并且该方法提取的特征可判别性优于卷积神经网络和堆叠自编码器等方法.