摘要

联邦学习是一种高效隐私保护技术,其能在不直接获得数据源的情景下,通过参与方的本地训练及传输主要参数,进而成功训练出一个完整的学习模型。但联邦学习本体也有很多隐患因素,文章简单介绍联邦学习的概念,分析联邦学习内的威胁因素,包括投毒攻击、对抗攻击及隐私泄露,探究相关防御思路与策略。