摘要
面向对象软件度量是理解和保证面向对象软件质量的重要手段之一.通过将面向对象软件的度量值与其阈值比较,可简单直观评价其是否有可能包含缺陷.确定度量阈值方法主要有基于数据分布特征的无监督学习方法和基于缺陷相关性的有监督学习方法.两类方法各有利弊:无监督学习方法无需标签信息而易于实现,但所得阈值的缺陷预测性能通常较差;有监督学习方法通过机器学习算法提升所得阈值的缺陷预测性能,但标签信息在实际过程中不易获得且度量与缺陷链接技术复杂.近年来,两类方法的研究者不断探索并取得较大进展.同时,面向对象软件度量阈值确定方法研究仍存在一些亟待解决的挑战.对近年来国内外学者在该领域的研究成果进行系统性的总结.首先,阐述面向对象软件度量阈值确定方法的研究问题.其次,分别从无监督学习方法和有监督学习方法总结相关研究进展,并梳理具体的理论和实现的技术路径.然后,简要介绍面向对象软件度量阈值的其他相关技术.最后,总结当前该领域研究过程面临的挑战并给出建议的研究方向.
-
单位计算机软件新技术国家重点实验室; 南京大学