摘要
针对生成对抗网络生成火焰图像质量不高、颜色难以控制的问题,基于HistoGAN算法,提出一种新的火焰生成算法(fire-GAN)。首先,在图像预处理环节添加火焰图像分割,使网络不受背景的干扰,能有效减少生成火焰发生形状变形、颜色失真的情况;其次,提出圆形度损失函数,使网络在训练过程中更加关注火焰轮廓的复杂度;最后,在生成器和判别器中均采取数据增强,使网络在训练过程中保持稳定,避免发生梯度爆炸。经实验测试,fire-GAN生成的火焰与目标火焰的RGB平均误差为2.6%,Fréchet inception distance(FID)为59.23,inception score(IS)为2.81。实验结果表明,fireGAN能生成与目标火焰图像颜色相近、清晰度好、真实性高的火焰图像。
- 单位