摘要
利用回归分析法建立Landsat-8遥感数据提取的归一化植被指数(NDVI)、归一化绿度植被指数(GNDVI)、差值植被指数(DVI)、比值植被指数(RVI)、大气阻抗植被指数(ARVI)、土壤调整植被指数(SAVI)与实测地上生物量的多种反演模型,通过模型精度检验筛选适宜荒漠灌丛植被地上生物量反演的最优模型。结果表明,6种参与建模的植被指数中SAVI最适于构建准噶尔盆地荒漠灌丛草地地上生物量反演模型;筛选出的一元非线性和多元线性回归模型相比于简单一元线性回归模型反演精度更高,所有一元回归模型中二次多项式和三次多项式模型表现最突出,S曲线、指数和幂指数反演精度普遍较低;以SAVI建立的三次多项式回归模型:Y=38.761-129.868x+263.636x2-90.892x3(R2=0.653,P <0.01)最优。
- 单位