摘要
对结温进行精准预测和提取仍然是SiC MOSFET器件应用中需要攻克的技术难题,对此,结合粒子群优化-反向传播(PSO-BP)神经网络预测精度高以及径向基函数(RBF)神经网络函数逼近能力强等优点,提出了一种基于PSO-BP与RBF级联神经网络的SiC MOSFET结温预测模型。模型将SiC MOSFET的漏极电流和通态电压作为PSO-BP神经网络的输入,再将PSO-BP神经网络的结温预测值以及插值法得到的温度插值作为RBF神经网络的输入。基于LTspice仿真获取的数据集验证了模型对SiC MOSFET结温预测的有效性。结果表明,该模型对SiC MOSFET结温预测的绝对误差在0.005℃以内,均方根误差和平均绝对误差分别低至0.0082和0.0015,相比单一的BP、PSO-BP以及RBF神经网络模型,其预测精度得到了大大提高。该级联神经网络模型可实现对SiC MOSFET结温(> 75℃)的精准预测。
-
单位自动化学院; 江苏师范大学