摘要

为了提高人工搜索群算法(ASSA)的整体性能,提出一种基于动态扰动策略的人工搜索群算法。为了增加算法的种群多样性,在算法初期,通过Tent映射的混沌策略产生初始种群。结合反向学习策略,算法在进化过程中对种群进行反向学习扰动,从而增加算法跳出局部最优解的可能性。算法采用动态步长的方式,在初期时能够扩大最优解的搜索范围,在后期时能够加速种群收敛到最优解。基于标准测试函数的实验研究结果表明,提出的改进算法与标准人工搜索群算法,及其改进算法进行对比,在收敛速度和收敛精度上都有明显提高,整体上提升了该算法的性能。