摘要
为了研究分析飞机的动力装置在执行飞行任务过程中的运行可靠性,针对运行可靠性影响因素的多维、耦合的特点,采用机器学习方法对动力装置运行可靠性的时变规律及其相关影响因素进行分析。提出了考虑动力装置的工作状态、飞机的运行外界条件、飞机的飞行状态3类因素分析动力装置实时运行状态下的时变可靠性方法;并基于飞机实际运行的快速存取记录器(QAR)数据,梳理了动力装置运行可靠性分析相关的3类因素、16个主要特征。结合飞机运行的时空关系,采用数据包络分析(DEA)方法对飞机动力装置的工作状态特性与性能裕度进行非参数分析,基于提取的QAR数据特征,采用随机森林、多变量神经网络回归算法,建立2种基于机器学习的动力装置运行可靠性分析模型。以B737-800机型为例,对一次北京至珠海的飞行任务的动力装置相关运行数据进行分析,对2种机器学习分析模型进行训练与测试研究。分析结果表明:对动力装置工作状态特性贡献度最大的特征依次为计算空速、飞行时间与飞行高度;对动力装置性能裕度贡献度最大的特征依次为动力装置工作状态特性、雷达气象与飞行时间。所采用的2种机器学习方法能较好反映动力装置运行过程的时变可靠性规律,可为动力装置的运行与特情处理提供参考。
-
单位西北工业大学; 上海微小卫星工程中心