摘要
为了能够在任何情况下准确得到四叶图在2种图变换下距离特征值的极值,运用行列式的性质、韦达定理及不等式的放缩,给出了四叶图的2种图变换及上述问题的结果。首先分别给出变换前后3种四叶图距离矩阵、距离拉普拉斯矩阵及距离无符号拉普拉斯矩阵,利用行列式的性质计算得出其特征多项式,由韦达定理判断出3种距离特征多项式正负根的个数,通过不等式的放缩估计出特征值的范围,从而求出2个最大特征值和的范围;其次对变化前后四叶图的3种距离矩阵2个最大特征值的和进行比较。结果显示,四叶图在经过2种变换后2个最大特征值的和是增加的。所得结果为特殊图类距离特征值极值问题提供了研究方法,对分子稳定性问题的研究具有一定的借鉴价值。
- 单位