摘要

GD法是从泰勒展开式出发,推出的一种求解偏微分方程的数值方法,该方法通过离散,将某节点的各阶导数表达为全域节点函数值的加权和,从而将偏微分方程转化为由待求节点函数值表述的代数方程组.系统地介绍了GD法的基本原理以及权系数的推导,并运用该方法求解了梁和薄板静力问题.计算结果表明,GD法具有数学原理严谨、精度高、收敛快、易于编程计算等特点,是求解偏微分方程的有力工具.