摘要

内泄漏是液压缸最常见故障,严重影响液压缸的正常工作,因此对其在线测量显得尤为重要。提出内泄漏在线测量的工作原理,包括在线测量系统、应变片的固定方式和流量-应变信号转换的数学模型,并搭建实验系统采集内泄漏和应变数据并进行数据处理。分别采用BP神经网络和卷积神经网络对液压缸内泄漏进行预测,结果表明,卷积神经网络准确度高、效率高,为其他液压元件微小流量的在线测量提供一种新的思路。