摘要
针对基于人脸识别的课堂考勤系统漏检和低识别率的问题,采用主、从双摄像机设备,提出一种联合学生人体检测和人脸角度筛选的方法。首先通过Mask R-CNN算法检测主摄像机拍摄图中的学生人体位置;然后控制从摄像机(PTZ相机)依次获取每位学生的高质量放大图像;再通过MTCNN算法和FSA-Net算法从中检测并识别出人脸姿态,筛选出每位学生的正脸图像;最后对筛选出的学生正脸图像使用FaceNet算法提取人脸特征,用于支持向量机(SVM)分类器的训练或识别。实验结果表明,与Tiny-face算法相比,人体检测算法在重叠比(IOU)为0.75时平均精度(AP)值提高了约36%且检测耗时减少了57%;与建立多姿态人脸数据库的方法相比,采用人脸角度筛选的方法使识别率提高了4%;多数情况下整个课堂学生识别的准确率接近100%。所提方法简化了学生注册过程,提高了人脸识别率,为解决人脸漏检问题提供了新的思路。
- 单位