针对短时交通流量具有复杂性、非线性等特点,提出基于粒子群算法的神经网络交叉路口短时交通流量预测方法;利用混沌粒子群算法对BP神经网络权值和阈值进行优化,克服易陷入局部极小和引起振荡效应现象,从而提高了网络的预测精度;实验仿真结果说明,与标准粒子群算法相比较,新算法可以有效提高预测精度,减少预测误差,最大绝对误差下降至12.15%,相对预测误差在10%以内的预测数据提高至57.5%,并且很好地反应了交通流的特点,是一种可行的预测方法。