针对语音签到系统在实际运用中识别率较低的问题,从提高对标签缺失数据的利用角度出发,提出一种利用无监督学习来提高识别率的方法。该方法基于深度置信网络隐马尔可夫混合模型(DBN-HMM),利用受限波尔茨曼机(RBM)为无监督学习提取特征参数,接着利用深度置信网络(DBN)得到对原始数据的观测概率。隐马尔可夫(HMM)据此通过前向算法求出数据的似然概率,并将概率值最大的类别作为识别结果。实验表明,使用DBN-HMM模型可以有效利用存在标签缺失的数据,提高语音签到系统的识别能力。