摘要
为了提升时序瓦斯浓度预测精度,提出1种基于特征组合(FCIH)-时间卷积网络(TCN)的预测模型。首先,基于粒子群(PSO)算法重构惯性权重和加速因子,设计自适应粒子群(IAPSO)寻优算法;然后,利用IAPSO优化霍尔特指数平滑(Holt)相关超参数,应用Holt生成时序瓦斯浓度的水平、趋势分量,并与时序瓦斯浓度历史数据构成特征组合,以此获取具有高度预测性的特征;接着,基于构建的特征组合,搭建FCIH-TCN时序瓦斯浓度预测框架;最后,采用多个模型进行对比实验。研究结果表明:使用IAPSO后,Holt预测模型的平均绝对误差下降0.019;FCIH作为模型输入有效提高LSTM、GRU及TCN模型的预测精度;FCIH-TCN的RMSE为0.05,MAE为0.035,其预测精度优于其他对比模型。研究结果可为矿井瓦斯灾害防治提供参考。
- 单位