摘要
依赖大量训练样本和复杂的网络结构,深度学习方法取得了优秀的图像识别精度。然而在单样本人脸识别问题上,深度学习方法的性能仍有待提高,因为学习样本少而且人脸图像易受多种因素的干扰。针对深度网络模型的结构复杂问题,受启发于构建Gabor滤波器无需任何学习过程且与训练数据无关,以及径向基(radial basis function, RBF)核池化能够提取非线性二阶特征,提出一种联合Gabor滤波器和RBF核池化的轻量卷积网络方法。首先对人脸图像进行Gabor卷积得到特征图;然后采用双曲正切函数tanh激励特征图以提高特征的表达能力;最后利用多尺度金字塔策略将特征图划分为多个区域,在每个区域上做RBF核池化,所有区域的核池化特征串联得到人脸特征表示。探讨了多个参数对识别性能的影响,对比了协方差池化和核池化的区别和性能。在三个单样本人脸识别和一个视频人脸验证数据集上进行大量实验,结果表明本文方法学习的人脸特征具有优秀的判别能力,对光照、遮挡、年龄等因素具有强鲁棒性。
- 单位