利用小波变换(WT)和极值学习机(ELM)对电能质量事件(PQE)进行识别分类,利用离散小波变换(DWT)对信号进行多分辨率分析,获得PQ信号的特征能量系数,并在25、35、45dB噪声环境下,构造了3种PQ数据集。ELM是一种有效的广义单隐层前馈网络(SLFNs)学习算法,可用于识别各种多分类问题。对比试验与现有方法结果,证明基于小波变换的极限学习机能对8种扰动进行有效分类,具有鲁棒性强的识别结构,可用于实际电力系统信号分类。