摘要
通过对语料库中越南语名词短语的邻接词与邻接词性进行统计调查,发现越南语名词短语蕴含着丰富的边界信息,这对越南语名词短语识别具有重要价值。提出两种将越南语名词短语边界信息融入深度学习模型的方法。一是计算每个词与预训练名词短语(Noun Phrase,NP)向量的相似度得到边界相似度向量(Border Similarity Vector,BS Vector);二是计算每个词与每个预训练标签类别向量的相似度得到(Label Similarity Vector,LS Vector)。实验结果表明,在加入BS Vector后,模型的整体标注准确率提升了0.43%,在加入LS Vector后,模型的整体标注准确率提升了0.6%。该方法不仅对越南语名词短语识别任务具有提升作用,对其他语种、其他领域的识别任务也有很大的参考和借鉴意义。
-
单位信息工程大学