摘要
网络流量分类广泛应用于网络资源分配、流量调度、入侵检测系统等研究领域。随着加密协议的普及和网络流量快速发展,基于深度学习的流量分类器由于其自动提取特征的特性和较高的分类准确性,逐渐受到科研人员的重视,但是面向网络流量分类的可信程度方面却不曾有研究。本文提出一种基于RBF神经网络对加密网络流量进行可信分类的方法。所提算法建立在RBF网络的思想上并采用一种新的损失函数和质心更新方案来进行训练,通过使用梯度惩罚强制检测输入的变化,能够有效地检测分布外的数据。在2个公共的ISCX VPN-nonVPN和USTC-TFC2016流量数据集上,与同类算法相比,所提算法取得了最好的分布外检测结果,在AUROC指标上达到98.55%。实验结果表明所提算法在具有较高分类性能的同时,能够有效地检测出分布外的流量数据,从而提高流量分类的可信性。
- 单位