摘要
为提高水电机组故障诊断的准确率,提出基于优化支持向量机多分类器的水电机组故障诊断方法。支持向量机(Support Vector Machine,简称SVM)在解决小样本问题上有着突出的表现,针对其参数设置采用人工蜜蜂群(artificial bee colony,简称ABC)进行参数优化。建立基于Fisher加权的朴素贝叶斯分类器(Attribute Fisher Weighted Naive Bayes Classifier,简称FWNBC)和基于Mahalanobis距离的分类器(Mahalanobis Distance Classifier,简称MDC),并与优化的支持向量机分类器组合成为FWNBC+MDC+优化SVM的分类融合模型,以基于优化微分经验模式分解法(Differential empirical mode decomposition,简称DEMD)提取的分量作为输入特征向量,应用融合模型对水电机组故障进行诊断,以投票为决策方法。实验结果表明该模型对于未经优化的支持向量机和特征提取以及单一的分类器,能有效提高故障识别的准确率。
-
单位河北张河湾蓄能发电有限责任公司; 安徽金寨抽水蓄能有限公司