摘要
随着生产过程越来越复杂,多工序制造过程在工业生产中越来越普遍,工序之间相互关联作用,产品质量的影响因素日益复杂。针对大数据环境下多工序复杂生产过程,考虑数据的全样本、多特征特性,构建了谱聚类(SC)和粒子群(PSO)算法优化径向基(RBF)神经网络的质量预测模型。模型验证结果表明,单一的RBF预测误差为0. 649,SC+RBF预测误差为0. 214,BP神经网络质量预测误差为0. 183,改进的RBF预测模型效果最佳,均方根误差为0. 089,小于10%,满足工业生产的实际要求。
- 单位