摘要

针对传统粒子群算法在移动机器人路径规划过程中早熟引起的局部最优问题,将运动过程预测思想集成到粒子群优化算法中,构造神经过程-粒子群混合算法。主要思路是在粒子群个体进行下一次迭代时,利用神经过程预测个体位置,增加了迭代后期粒子群体的多样性,避免过早陷入局部最优,从而提高算法优化能力。实验结果显示,改进算法用于解决机器人路径规划问题,整体性能优于传统的粒子群优化算法。