摘要

现有的深度学习方法在处理点云分割任务时,难以有效地学习点云的局部特征,存在分类分割精度低和鲁棒性差的问题。构建深度神经网络RMFP-DNN用于多特征点云分类分割。分别利用自注意力模块和多层感知机提取点云的局部特征和全局特征,并将两者相互融合,提高分类分割的准确率和鲁棒性。实验结果表明,RMFP-DNN平均分类准确率和整体分类准确率分别为88.9%和92.6%,与PointNet、PointNet++、DGCNN等方法相比,准确率较高且鲁棒性较好。

全文