摘要

针对混凝土坝位移监测数据的时频非线性特征严重影响到数值模型预报精度的难题,通过小波技术解析原型数据中多重交叉环境驱动的效应实况,有机结合非线性自回归模型(Nonlinear Autoregressive Model with Exogenous Input, NARX)和差分整合移动平均自回归模型(Autoregressive Integrated Moving Average Model, ARIMA),建立了多尺度组合机制下的自回归模型体系,解决了内蕴复杂混沌特性的监测序列的信息挖掘难点。工程实例分析表明,所建模型的拟合精度及预测能力均得以提升,相比于传统模型具有较好的抗噪性和鲁棒性。此外,所建立的计算模型经一定的优化和拓展,亦可推广应用于其它水工建筑物的效应预报分析。

  • 单位
    南昌大学建筑工程学院; 南京水利科学研究院; 水文水资源与水利工程科学国家重点实验室