摘要

为了提高视频中人脸检测的检测速度,采用回归分析方法预测连续视频中人脸中心位置坐标,并通过调整区域宽度系数确定人脸区域位置,从而提出一种人脸检测加速算法。该算法的主体框架采用VJ(Viola-Joines)结构,在人脸检测过程中,通过聚合通道特征和弱级联分类建立多尺度精细采样图像特征金字塔,并利用回归分析方法进行人脸中心位置坐标拟合,再采用粗粒度预测方法降低算法时间复杂度,最后通过优化人脸区域位置系数提高人脸检测准确率。在此基础上,又通过目标预测、跟踪算法进行人脸检测的二次加速。实验结果表明,该算法有效减少了视频人脸检测遍历区域,提高了人脸检测的检测速度,缩短了提取视频人脸特征区域的时间,更加适合视频人脸检测的实时性应用。