为了提高全卷积神经网络(Fully Convolutional Networks, FCN)算法检测异物的精确度,提出一种基于FCN不确定特征的铁路入侵异物检测算法。将检测的不确定性这一自然属性添加到检测系统中,同时为了减少卷积过程中引起的图像伪影现象,提出一种新的混合下采样方法。实验证明,该算法可以有效地提高FCN异物检测的精确度,算法的PR曲线、F-measure和平均绝对误差(Mean Absolute Error, MAE)均优于现有的算法。