摘要

针对室外场景中,因摄像头角度不统一、室外光照多变等因素导致行人难识别的问题,提出一种针对复杂场景的行人再识别优化方法。通过在ResNet的浅层嵌入实例-批归一化层和空间变换网络,引入Mish激活函数,构建改进的ResNet-50特征提取骨干网络,建立面向复杂场景的行人再识别模型。经在MSMT17数据集上验证,rank-1和mAP分别达到79.8%、58.5%,说明了该算法的有效性。

  • 单位
    广东省科学院