摘要
随着电力系统新技术的发展以及需求响应等灵活性政策的实施,传统的电力消费者正在逐步转变为产消者,其用电行为习惯也在逐步发生改变。在这一背景下,运用电力用户画像技术可以有效把握电力用户用电特性,挖掘海量用电数据的潜在价值,因此文中提出一种基于信息增益与Spearman相关系数的电力用户行为画像方法。首先,利用基于间隔统计量确定最优聚类数的k-means算法对电力用户用电数据进行聚类分析;然后综合考虑特征有效性与冗余度,构建特征集适应性评价系数;最后采用遗传算法进行迭代求解,得到最优特征子集,对电力用户行为画像进行刻画分析,并通过算例分析验证了所提方法的有效性。
-
单位西安交通大学; 国网河南省电力公司