摘要
传统的基于评分预测的协同过滤算法在计算用户之间相似性时只针对用户共同评过分的物品计算评分差异,然而由于不同用户共同评分的物品数目不同,使得计算标准不统一,从而导致推荐质量不理想。本文在传统算法的基础上进行改进,新算法在计算相似性的时候一方面考虑了用户共同评分的物品数,另一方面还考虑了物品的热门程度对用户相似性计算的影响。实验结果表明,新算法在推荐准确率和召回率上都比传统算法提高了1倍以上。研究还发现在算法中使用Pearson相关系数明显好于使用欧氏距离作相似性度量标准得到的推荐效果。
- 单位