摘要
利用机器学习发现影响学者知识创新绩效的复杂非线性特征组合,能提升学者绩效和促进资源优化配置。以2016—2018年国家自然科学基金委公布的1409位国家杰出青年科学基金项目和优秀青年科学基金项目获得者为研究对象,运用学者获得项目前在web of science刊载的14 819篇论文构建学者科研合著网络(个体网) 927个。考虑知识创新绩效的滞后性,采用学者获得项目后发表的20 824篇论文及其91 968篇被引论文,结合中国科学院文献情报中心发布的期刊分区表等多源异构数据,使用K-Means聚类将学者进行群组划分,得到特征均衡型、环境驱动型和合作创造型三类学者群组,运用决策树CART算法挖掘不同类型学者知识创新绩效的潜在决策规则。研究结果表明:(1)知识创造具有普适性,它是促使不同类型杰出学者达成高知识创新绩效的关键因素;(2)杰出学者应根据内外部综合条件配置科研合作关系资源,尽量避免封闭式发展路径与合著者过多导致的“规模不经济”;(3)在不同类型学者群组中,存在影响知识创新绩效的不同特征组合,为杰出学者达成高绩效目标提供个性化发展策略。
- 单位