摘要
针对故障诊断中人为评估振动谱图而导致诊断结果不稳定的情况,提出基于振动谱图模式识别的故障诊断方法,利用Hilbert包络分析和双谱分析的组合方法来提取振动信号的故障频率特征,进而采用双谱图的灰度共生矩阵(GLCM)及其特征统计量来表征故障特征.改进了人工免疫网络(AIN)分类算法,将特征统计量作为抗原,通过对抗原的学习训练,形成记忆抗体集;通过判断待检验抗原与记忆抗体的匹配程度,实现故障分类识别.滚动轴承故障诊断实践证明,人工免疫网络分类方法具有良好的适应性,取得了较BP神经网络更好的检测准确率.
- 单位