摘要

针对快速鲁棒特征算法(SURF)局部不变特征描述符存在运算时间较长、匹配准确率较低的问题,文中提出基于网格运动统计的改进快速鲁棒特征图像匹配算法.首先运用Hessian矩阵行列式确定图像中的特征点,采用梯度方向改进SURF中的主方向提取方法,提高特征点主方向的准确性,并使用二进制特征描述子进行特征点描述.再对获取的特征点进行汉明距离粗匹配.最后,采用网格运动统计剔除误匹配点.在Oxford VGG标准数据集上的实验表明,文中算法在图像发生尺度、光照、旋转等变化时匹配准确率与效率较高.