摘要
居民储蓄额是一种非平稳的时间序列,与实时政策影响有关,同时作为地区性总GDP的一大重要指标,其预测走向将是政府部门需要重视的一个环节,处于探索阶段。因此,提高储蓄率预测精度需要以较为精确样本值进行数据挖掘,同时采用单一理论模型将无法得到可实际应用的预测效率。因此,基于组合预测思想,将采用梯度下降法的BP神经网络反复训练,修正灰色Verhulst预测的组合模型对广州市城乡居民储蓄进行数据挖掘,训练过程中采用最高准确率模型进行预测未来三年的居民储蓄额,提前预知储蓄率变化走向,及时提出应对措施。残差合格检验很好地反映模型准确率的提高,具有较好的拟合和预测精度。
- 单位