摘要
针对经验小波变换(Empirical Wavelet Transform, EWT)对强噪声环境下风力机齿轮箱轴承轻微故障特征提取不足的问题,利用滑移窗口提取子带的连续平均谱负熵(Continuous Average Spectral Negentropy, CASN)对EWT算法进行改进。通过CASN-EWT方法分解风力机齿轮箱轴承故障信号,采用峭度准则对所得分量进行筛选并重构,再开展包络分析,准确提取出故障特征。结果表明:CASN-EWT方法在保留EWT算法自适应性和有效避免模态混叠效应与端点效应优点的同时,能够极大提高EWT分解算法对噪声影响的鲁棒性,有利于准确提取故障特征频率,实现故障精确识别。
- 单位