摘要
在多标记学习中,特征选择是处理数据高维问题和提升分类性能的一种有效手段,然而现有特征选择算法大多是基于标记分布大致平衡这一假设,鲜有考虑标记分布不平衡的问题。针对这一问题,本文提出了一种边缘标记弱化的多标记特征选择算法(Multi-label feature selection algorithm with weakening marginal labels,WML),计算不同标记下正负标记的频数比率作为该标记的权值,然后通过赋权方式弱化边缘标记,将标记空间信息融入到特征选择的过程中,得到一组更为高效的特征序列,提升标记对样本描述的精确性。在多个数据集上的实验结果表明,本文算法具有一定优势,通过稳定性分析和统计假设检验进一步证明本文算法的有效性和合理性。
- 单位