摘要

目的:解决目前食品分拣机器人的视觉伺服控制系统结构复杂、计算量大,无法满足分拣机器人对视觉伺服控制系统的灵活性和适应性的问题。方法:在机器人视觉伺服控制系统结构的基础上,提出一种将改进粒子群算法与BP神经网络相结合的食品分拣机器人视觉伺服控制方法。粒子群算法在迭代过程中使用交叉和变异来保持种群多样性,对BP神经网络的初始权值和阈值进行优化。结果:与常规控制方法相比,该控制方法可以在较短的时间内将食品生产线机器人带到预定位置,位置逼近的相对误差为0.38%。结论:该控制方法在处理较复杂的任务时,具有较强的适应性,有一定的实用价值。

全文