摘要
针对轮式移动机器人的轨迹跟踪问题,提出一种广义二型模糊神经网络控制方法。模糊控制可以弥补机器人动态特性中的非线性和不确定性因素,而广义二型模糊系统能更有效地处理外界干扰和参数扰动等不确定性,广义二型模糊神经网络系统结合了神经网络强大的非线性拟合能力和自学习能力,能够更有效地对规则库中可能存在的不确定性进行建模。它可以进一步提高控制精度,达到跟踪的目的。仿真结果表明,与PID控制器、模糊控制器和一型模糊神经网络控制器相比,该方法能更好地跟踪轮式移动机器人的运动轨迹且拥有更好的抗干扰能力。
- 单位