摘要
为解决视觉SLAM(同时定位与地图创建)算法依赖图像亮度而对光照变化场景敏感的问题,提出一种基于在线光度标定的半直接视觉SLAM算法。首先,根据相机成像原理,提出基于光度标定的帧间位姿估计方法,在求解位姿的同时对原始的输入图像进行光度校正。其次,在特征追踪环节采取最近共视关键帧匹配策略,以提升特征点匹配效率。最后,对后端重投影迭代优化策略进行改进,降低光照变化对视觉SLAM算法的精度和鲁棒性的影响。在TUM、EuRoC数据集上的实验结果表明,本算法的轨迹估计精度优于LSD-SLAM和SVO 2.0算法,尤其是在中等难度、高难度的数据集序列上。在真实环境测试中,通过对比本算法与激光方法的轨迹估计结果,证明本算法有效提高了传统视觉SLAM方法在光照不均匀场景下的定位精度与鲁棒性。
- 单位