摘要
为了在嵌入式平台上使人体行为识别网络达到实时效果,提出了一种基于轻量级OpenPose模型的人体行为识别方法。所提方法从人体的18个骨骼关键点角度出发,通过骨骼关键点的空间位置确定行为类型。首先通过轻量级OpenPose模型提取人体的18个骨骼关键点坐标信息,然后利用关键点的编码对人体的行为进行描述,最后利用分类器对获取的关键点坐标进行分类,从而识别出人体的行为状态,并将其移植到Jetson Xavier NX设备上,利用单目相机进行了测试。实验结果表明,所提方法在嵌入式开发板Jetson Xavier NX上能够快速、准确识别出行走、挥手、下蹲等人体的11类行为,平均识别准确率达到96.08%,检测速度达到了11 frame/s以上,相比于原模型,检测速度提升了177%。