摘要

训练多个神经网络并将其结果进行合成,能显著地提高神经网络系统的泛化能力。本文提出了一种带偏置的选择性神经网络集成构造方法。对个体网络引入偏置项,增加可选网络的数量。选择部分网络集成,改善网络集成的性能。把个体网络的偏置项统一为集成偏置项,在训练出个体神经网络后,使用遗传算法选择部分网络集成,同时确定集成偏置项。理论分析和实验结果表明,该方法能够取得很好的网络集成效果。