摘要
针对传统多变量短期电力需求预测方法没有归一化处理电力数据,导致预测性能较差、精度较低,提出基于大数据技术的多变量短期电力需求预测方法。在电网大数据框架中,连接MONGOOSE数据库引擎与短期电子服务器,完成大数据技术支持下的短期电力环境搭建。基于大数据技术,通过确定神经预测网络层数的方式,实现电力需求数据的归一化处理,根据多变量短期预测误差的计算结果,实现基于大数据技术多变量短期电力需求预测方法的应用。实验结果表明,研究方法的电力需求预测有效性更好,预测精度更高。
- 单位
针对传统多变量短期电力需求预测方法没有归一化处理电力数据,导致预测性能较差、精度较低,提出基于大数据技术的多变量短期电力需求预测方法。在电网大数据框架中,连接MONGOOSE数据库引擎与短期电子服务器,完成大数据技术支持下的短期电力环境搭建。基于大数据技术,通过确定神经预测网络层数的方式,实现电力需求数据的归一化处理,根据多变量短期预测误差的计算结果,实现基于大数据技术多变量短期电力需求预测方法的应用。实验结果表明,研究方法的电力需求预测有效性更好,预测精度更高。