摘要
综合征监测作为公共医疗卫生政策的主要检测指标,拥有充足且及时的监测信息至关重要。传统流行病学指标监测的滞后和误导会影响病情严重地区的医疗实施方案。使用谷歌趋势搜索量、谷歌移动、电信运营商、英国国家医疗服务体系(National Health Service, NHS)电话119和线上新冠检测请求网站的空间数据,提出一种局部范围内SARS-CoV-2传播和临床风险的早期指标建模方法。利用浅层学习算法作为基准方法训练局部空间神经网络,提出空间集成长短期记忆(Spatio-Integrated Long Short-Term Memory, SI-LSTM)算法和空间集成卷积神经网络长短期记忆(Spatio-Integrated Convolutional Neural Network Long Short-Term Memory, SI-CNN-LSTM)算法。在规定的评估时间周期内,两种算法均能准确识别出疫情感染高风险区域。此外,在基本公共卫生服务项目中,该模型还原了2020年底阿尔法变体、2021年4月德尔塔变体和2021年11月奥密克戎变体在英国境内的局部增长指数,其空间分散性和增长指数得到了临床数据的证实。
- 单位