摘要

在网络流量分类中,各协议类别之间样本分类不平衡,从而导致训练的模型泛化能力差、识别准确率低。为此,提出了一种在生成对抗网络中添加通道注意力机制的方法(AttentionGAN),来进行数据增强,对样本较少的协议进行扩充。该方法首先将原始流量数据报存储(Packet Capture,PCAP)数据按照流为单位进行切分、填充,并生成灰度图;其次使用AttentionGAN方法对数据集进行扩充;最后在公开数据集ISCX VPN-nonVPN和USTC-TFC2016上使用NIN、LeNet和VGG16模型对原始数据集和平衡后的数据集进行分类测试。实验结果表明,基于AttentionGAN的平衡方法在精确度、召回率、F1这3个指标上均优于过采样(Synthetic Minority Oversampling Technique,SMOTE)、生成对抗网络(Generative Adversarial Networks,GAN)和沃瑟斯坦生成式对抗网络(Wasserstein GAN,WGAN)平衡方法。