摘要
为解决网络社区聚类算法在实际应用中存在热点捕捉困难和社区聚类生存时间较低的问题,提出了一种基于热点度轨迹显影机制的网络社区聚类算法。首先,考虑网络社区聚类存在的多径一体特性,采用抽样方式与角度估计方法来实现热点信号的精确捕捉,以提高聚类效率;随后,对热点信号矢量空间进行按列重排,并综合考虑传输矩阵具有的按列正交及全秩特性,构建热点度轨迹显影方法,以提高聚类中热点显影速度和增加聚类生存时间。仿真实验表明:与聚类流动性映射算法(Clustering Liquidity Mapping Algorithms,CLM算法)、超欧里几何热度聚类算法(Hyper-Eulerian Geometric Thermal Clustering Algorithms,H-EGTC算法)相比,所提算法具有更低的聚合时间和搜寻失误率,以及更高的热点显示时间。
-
单位井冈山大学; 马鞍山职业技术学院