摘要
针对非高斯数据分布过程中回归预测精度不足的问题,提出一种在独立成分分析(ICA)的基础上与正交信号校正(OSC)相结合的多元线性回归(MLR)方法——正交独立成分回归(O-ICR).首先将原输入数据通过正交ICA(O-ICA)进行预处理,去除ICA在提取高阶统计量时带来的与Y无关的干扰变化,然后对校正后的X提取独立成分,代替原输入数据建立与Y之间的回归预测模型.与传统的ICR相比,该方法提取的独立成分经过校正可使回归模型的预测精度更高.最后通过Tennessee Eastman(TE)过程的质量预测仿真,验证了该建模方法的有效性.
- 单位