摘要

现有的红外与可见光图像融合算法通常从单一尺度提取图像特征,导致融合图像无法全面保留原始特征信息.针对上述问题,提出一种基于多尺度与注意力机制的自编码网络结构实现红外与可见光图像融合.首先,采用密集连接和多尺度注意力模块构建编码器网络,并引入自注意力机制增强像素间的依赖关系,充分提取红外图像的显著目标和可见光图像的细节纹理;其次,特征融合阶段采用基于通道和空间的联合注意融合网络,进一步融合图像典型特征;此外,设计基于像素、结构相似性和色彩的混合损失函数指导网络训练,进一步约束融合图像与源图像的相似性;最后,通过对比实验的主观与客观评价结果证明,所提算法相比于其他代表性融合算法具有更优异的图像融合能力.

全文