摘要
为了实现模型的实时和嵌入式运行,提出了一种轻量级的卷积神经网络结构。通过采用较小的滤波器尺寸和引入深度可分离卷积,可大量减少模型参数,提高模型非线性表达能力;在网络末端引入子像素卷积层,直接从原始低分辨率图像学习到高分辨率图像的映射,计算成本为原来的1/k2(k为放大因子)。在Set5数据集上的实验表明,所提模型的速度较经典的图像超分辨率重建算法速度提高了25. 8倍,能够在通用GPU上实时运行,峰值信噪比平均提高了0. 17 dB,并且参数只有它的35%。
- 单位
为了实现模型的实时和嵌入式运行,提出了一种轻量级的卷积神经网络结构。通过采用较小的滤波器尺寸和引入深度可分离卷积,可大量减少模型参数,提高模型非线性表达能力;在网络末端引入子像素卷积层,直接从原始低分辨率图像学习到高分辨率图像的映射,计算成本为原来的1/k2(k为放大因子)。在Set5数据集上的实验表明,所提模型的速度较经典的图像超分辨率重建算法速度提高了25. 8倍,能够在通用GPU上实时运行,峰值信噪比平均提高了0. 17 dB,并且参数只有它的35%。