摘要

传统特征的片面性,传统跟踪模型对于模型漂移问题检测手段和补救措施的缺乏,限制着传统跟踪算法的性能.因此,本文提出了一种残差深度特征和漂移检测的核相关滤波跟踪算法.通过卷积神经网络提取分层特征,在卷积神经网络加入残差结构,连接不同的网络层,实现浅层和深层特征的融合.不需要人为设计特征融合方式,网络结构能够自动实现特征融合的功能.用深度特征区分目标和背景,比传统特征更具有分辨力,跟踪结果更精确;在预测当前帧的目标位置时,设计了一个响应强度下降计数器.计数器根据相邻连续帧响应强度的变化计数.每一帧根据计数器的数值判断是否出现模型漂移,并采取相对应的模型更新方案作为补救措施.响应强度下降计数器检测模型漂移的策略能够处理不同场景下跟踪目标的任务,实现鲁棒跟踪.在与当下的几种跟踪算法比较中,本文提出的跟踪算法在跟踪精度和鲁棒性都优于所对比的算法.